perm filename SKEW.TMP[TEX,DEK] blob
sn#713074 filedate 1983-05-29 generic text, type T, neo UTF8
\magnify{3000}
\def\\#1{\mathaccent"F }
$\mit\\5A+\\3B+\\3C+\\2D+\\3E+\\3F+\\3G+\\3H+\\4I+\\6J+\\2K+\\1L+\\3M+\\3N
+\\3O+\\3P+\\3Q+\\3R+\\3S+\\3T+\\1U+\\0V+\\0W+\\3X+\\0Y+\\3Z
+\\0a+\\0b+\\2c+\\6d+\\2e+\\6f+\\1g+\\0h+\\1\imath+\\3\jmath+\\0k+\\3l+\\4\ell
+\\0m+\\0n+\\2o+\\3p+\\3q+\\2r+\\2s+\\3t+\\1u+\\1v+\\3w+\\1x+\\2y+\\2z$
\eject
$\mit\\3\Gamma+\\6\Delta+\\3\Theta+\\6\Lambda
+\\3\Xi+\\3\Pi+\\3\Sigma+\\2\Upsilon
+\\3\Phi+\\2\Psi+\\3\Omega
+\\1\alpha+\\3\beta+\\0\gamma+\\2\delta+\\2\epsilon+\\2\varepsilon
+\\3\zeta+\\2\eta+\\3\theta+\\3\vartheta
+\\2\iota+\\0\kappa+\\0\lambda+\\1\mu+\\1\nu+\\4\xi+\\0\pi+\\0\varpi
+\\3\rho+\\0\sigma+\\1\tau+\\1\upsilon+\\3\phi+\\3\varphi+\\2\chi
+\\4\psi+\\0\omega$
\bye
The subscript on each letter shows the amount of skew that was used;
for example, `$\\3B$' means that `$\skew3\hat B$' is the result of
`|$\skew3\hat B$|'. The same skews work with |\tilde| and the other math
\danger The problem with math accents is that a bit of finesse is necessary
to get them positioned just right; different characters look best with the
accent shifted in different ways, based on the shape of the character.
\TeX\ doesn't have enough information to do this, so it simply centers
the accent in each case. This looks pretty funny on some letters;
for example, `|$\hat A$|' and `|$\hat f$|' come out `$\hat A$'
and@`$\hat f$'. \ (You might, in fact, think of another adjective besides
``funny'' to describe such results.) \ Therefore plain \TeX\ provides
a control sequence called ↑{:skew} that makes it fairly easy to put
accents in their proper place. If you write `|$\skew5\hat A$|', for example,
you get `$\skew5\hat A$', which look much better. The number following
|\skew| specifies a relative amount by which the accent is to be shifted
right; for example, `|$\skew3\hat A$|' and `|$\skew7\hat A$|' come out
looking like `$\skew3\hat A$' and `$\skew7\hat A$'. By fiddling with the
amount of skew you can find the setting that pleases you best. Here is
a formula that shows the author's recommendations for all the italic
letters:
\def\\#1#2{\setbox0=\hbox{$#2_{\hskip-\scriptspace}$}
\hbox to 1wd0{$\skew#1\hat#2$\hss}{}_#1}
$$\vbox{\leftskip\the\parindent \noindent
$\\5A+\\3B+\\3C+\\2D+\\3E+\\3F+\\3G+\\3H+\\4I+\\6J+\\2K+\\1L+\\3M+\\3N
+\\3O+\\3P+\\3Q+\\3R+\\3S+\\3T+\\1U+\\0V+\\0W+\\3X+\\0Y+\\3Z
+\\0a+\\0b+\\2c+\\6d+\\2e+\\6f+\\1g+\\0h+\\1\imath+\\3\jmath+\\0k+\\3l+\\4\ell
+\\0m+\\0n+\\2o+\\3p+\\3q+\\2r+\\2s+\\3t+\\1u+\\1v+\\3w+\\1x+\\2y+\\2z
+\\3{{\mit\Gamma}}+\\6{{\mit\Delta}}+\\3{{\mit\Theta}}+\\6{{\mit\Lambda}}
+\\3{{\mit\Xi}}+\\3{{\mit\Pi}}+\\3{{\mit\Sigma}}+\\2{{\mit\Upsilon}}
+\\3{{\mit\Phi}}+\\2{{\mit\Psi}}+\\3{{\mit\Omega}}
+\\1\alpha+\\3\beta+\\0\gamma+\\2\delta+\\2\epsilon+\\2\varepsilon
+\\3\zeta+\\2\eta+\\3\theta+\\3\vartheta
+\\2\iota+\\0\kappa+\\0\lambda+\\1\mu+\\1\nu+\\4\xi+\\0\pi+\\0\varpi
+\\3\rho+\\0\sigma+\\1\tau+\\1\upsilon+\\3\phi+\\3\varphi+\\2\chi
+\\4\psi+\\0\omega$.}$$
The subscript on each letter shows the amount of skew that was used;
for example, `$\\3B$' means that `$\skew3\hat B$' is the result of
`|$\skew3\hat B$|'. The same skews work with |\tilde| and the other math
accents, as well as it does with |\hat|.
\danger Notice that ↑{dotless} $i$ and $j$ were used in the symbols
`$\skew1\hat\imath$' and `$\skew3\hat\jmath$'. To get these symbols,
the author typed `|$\skew1\hat\imath$|' and `|$\skew3\hat\jmath$|'.%
↑(:imath)↑(:jmath)
\\1L
\\1U
\\1g
\\1\imath
\\1u
\\1v
\\1x
\\1\alpha
\\1\mu
\\1\nu
\\1\tau
\\1\upsilon
\\2D
\\2K
\\2c
\\2e
\\2o
\\2r
\\2s
\\2y
\\2z
\\2{{\mit\Upsilon}}
\\2{{\mit\Psi}}
\\2\delta
\\2\epsilon
\\2\varepsilon
\\2\eta
\\2\iota
\\2\chi
\\3B
\\3C
\\3E
\\3F
\\3G
\\3H
\\3M
\\3N
\\3O
\\3P
\\3Q
\\3R
\\3S
\\3T
\\3X
\\3Z
\\3\jmath
\\3l
\\3p
\\3q
\\3t
\\3w
\\3{{\mit\Gamma}}
\\3{{\mit\Theta}}
\\3{{\mit\Xi}}
\\3{{\mit\Pi}}
\\3{{\mit\Sigma}}
\\3{{\mit\Phi}}
\\3{{\mit\Omega}}
\\3\beta
\\3\zeta
\\3\theta
\\3\vartheta
\\3\rho
\\3\phi
\\3\varphi
\\4I
\\4\ell
\\4\xi
\\4\psi
\\5A
\\6J
\\6d
\\6f
\\6{{\mit\Delta}}
\\6{{\mit\Lambda}}